The first generation of cells—silicon-based solar cells: the battle between monocrystalline and polycrystalline mainstreams
In 1839, French scientist A.E. Becquerel discovered the photovoltaic effect. When two pieces of platinum metal were clicked and inserted into an acidic solution, an electric current flowed between the electrodes, opening the door to the world of photovoltaics. By 1954, the United States produced the first monocrystalline silicon solar cell, marking the birth of photovoltaic power generation technology.
P-type and N-type iterations, leading XBC solar cell
In recent years, as the conversion efficiency of P-type solar cell has gradually approached the "ceiling", it has become a general trend to iterate from P-type to N-type technology. As far as the first half of 2023 is concerned, about 19.55% of N-type solar module projects have been targeted, and N-type shipments and production capacity of various photovoltaic companies have increased to varying degrees.
According to the latest module efficiency published on the report, the top-ranked modules are basically N-type solar panels.
On September 5th, 2023, LONGi announced its bet on XBC solar cells. TOPCON and HJT use new passivation contact structures to improve the passivation effect and thereby increase conversion efficiency. The front of XBC solar cells is not blocked by metal grid lines, eliminating the front metal electrode structure. , able to maximize the utilization of incident light.
Compared with HIT solar cells and XBC solar cells, TOPCON solar cells have better compatibility with P-type solar cells production lines and lower transformation costs. The transformation investment per GW is about 50-70 million, making it main layout object in the current N-type solar cell production capacity of photovoltaic companies .